References

- [1] Bachrach, B.I., Wilson, D.L., Ford Engineering and Research Staff.
 - The Application of Handling Analysis to Vehicle Design and Development.

SAE National Meeting, Winter, 1984.

- [2] Nordeen, D.L., General Motors Research Laboratories.
 Analysis of Tire Lateral Forces and Interpretation of
 Experimental Tire Data.
 Society of Automotive Engineers National Meeting, January
 9-13, 1967.
- [3] Wong, J.Y. Theory of Ground Vehicles. John Wiley & Sons, New York, 1978.
- [4] Dugoff, H., et al., Tire Performance Characteristics Affecting Vehicle Response to Steering and Braking Control Inputs. Final Report for Contract No. CST-460, Office of Vehicle Systems Research, National Bureau of Standards, Washington, DC, August, 1969.
- [5] Sakai, H.
 Theoretical and Experimental Studies on the Dynamic
 Properties of Tyres: Parts 1,2,3, and 4.
 International Journal of Vehicle Design, vol. 2, no. 1,
 1981.
- [6] Radt, H.S., Jr., Milliken, W.F., Jr. Non-dimensionalizing Tyre Data for Vehicle Simulation. Road Vehicle Handling, Institution of Mechanical Engineering Conference Publications, 1983-5.
- [7] Uffelmann, F. Theory of Passenger Car Suspension Design and its Influence on Handling Dynamics. 2nd Course on Advanced Vehicle System Dynamics, International Center for Transportation Studies, Amalfi, Italy, May 28 - June 1, 1984.
- [8] Cole, D.E. Elementary Vehicle Dynamics. Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, 1971.
- [9] Jacobson, M.A.I.
 Safe Car Handling Factors.
 IMechE, December, 1974.
- [10] Segel, L.

 Basic Linear Theory of Handling and Stability of
 Automobiles.
 - First Course on Advanced Vehicle System Dynamics, ICTS International School of Applied Dynamics.

- [11] Killian, K.M.
 The Steady-State Behavior of an Automobile During Combined
 Turning and Thrusting/Braking.
 Bachelor's Thesis, Massachusetts Institute of Technology,
 1984.
- [12] Ellis, J.R. A Six Degree of Freedom Model of a Car. Proceedings of the 2nd International Conference on Vehicle Mechanics, Paris IV University, Sept. 6-9, 1971.
- [13] Topping, R.W.
 A Primer on Nonlinear, Steady-State Vehicle Turning Behavior.
 SAE 741096, Automobile Engineering Meeting, Toronto, Canada, October, 21-25, 1974.
- [14] Nordeen, D.L. Vehicle Directional Control Equations for an Inclined Roll Axis. General Motors Proving Grounds, Report No. A-2165, July 1969.
- [15] Bundorf, R.T., Leffert, R.L. The Cornering Compliance Concept for Description of Directional Control (Handling) Properties. General Motors Proving Ground, Report No. 2771 (no date).
- [16] Milliken, W.F. Jr., Dell'Amico, F., Rice, R.S. The Static Directional Control of the Automobile. SAE Paper No. 760712, October 1972.
- [17] Rice, R.S., Milliken, W.F., Jr.
 Static Stability and Control of the Automobile Utilizing
 the Moment Method.
 SAE Paper No. 80847, 1980.
- [18] Vehicle Dynamics Terminology. SAE J670d, Society of Automotive Engineers Recommended Practice, July 1975.
- [19] Crandall, S.H., et al.,
 Dynamics of Mechanical and Electromechanical Systems.
 McGraw Hill, New York, New York, 1968.
- [20] Bathe, K.J.
 Finite Element Procedures in Engineering Analysis.
 Prentice Hall, Englewood Cliffs, New Jersey, 1982.