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Chapter 4

Solution Technique

4.1 Vehicle Model Format

The model is a lumped mass representation of an automotive
vehlicle. As seen in Figure 4-1 the model is made up of five
masses: the large aprung mass, and four smaller unsprung masses.
The sprung mass has six rigid body degrees-of-freedom (dof) and
each unsprung mass has an essentially vertical dof. The last dof

is the steering angle. This adds up to & total of eleven dof's
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Figure 4-1: Ten degree-of-freedom vehicle model

but in chapter three, fourteen are described. The difference is
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the model developed uses sapindle forces as the unknowns (three at
each spindle) instead of the dof's described above which are
displacemaents. To further explain, the sprung mass is supported
by four reaction forces at the wheels which makes it a statically
indeterminate aystem. Typically, the constitutive relations of
the suspension springs are used to eliminate the force unknowns
in favor of rigid body displacements unknowns. This would reduce
the number of unknowns and eliminate the indeterminacy. However,
in this case the forces are favored as unknowns for the following
reasons:
-implementation of complex suspension models that influence
the anti-features (anti-dive and anti-squat}) is easier;
rthe drive train constraints are easier to describe in
terms of forces;
-the lateral tire forces are functions of longitudinal and
normal spindle forces not displacements; and
-the unsprung mass equations-of-motion are in a simpler
form if left as a function of forces.

As a result three more unknown forces are required which brings

the total number of unknowns to fourteen.

4.2 Newton Raphson Iteration

For the fourteen unknowns described above the fourteen
equations derived in chapter three must be solved. The fourteen
equations are of the form K x = r where K is the system matrix,
¥ is the vector of unknowna, and r is the vector of externally
applied inertia loads. Because the equations are non-linear K is=s
a function of x. This implies that an iterative technique must
be implemented to solve the equations. Newton-Raphson is such a

technique as described by Bathe [Z20].
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The first step in the Newton-Raphson procedure is to rewrite

the equations as general functions in the form, K x - ¢ = 0.
Theses functions are noted as f and are evaluated at an initial
Euess of Xo. This calculation creates a vector of out-of-balance
forces (or error) because this initial guess will not exactly
satisfy the §f functions. The next step involves the use of the
Jacobian matrix [&f/0x] which is an n ®* n matrix of partial
derivatives (derivatives of the functions, f, with respect to the
unknowns, x). The Jacobian is used to calculate the corrections
to the 1initial guess by noting that [&f/8x] dx = -f. Then by
inversion and multiplying, the correction factcrs are dx =
Cof axl-1(=-£). So, the vector of initial guesses are updated by
the correction factors, x1 = %o + dxe and in general after each
iteration the correction 1is8 Xn+s1 = Xn * dxXn. To summarize, we
have three relations to use in the Newton Raphson iteration:

Kx-rc=+f = functions;j (4-1)

dx = [&f/8x]="{(-f) = correction factors; and (4-2)

Xn+1 = ¥Xn *d¥n = corrected unknowns. | (4=-3)
The iteration is continued until the function values, f, and the
correction factors, dx, go to zero.

The computation necessary to solve equation (4-2) is daﬁu by
a subroutine called SIMQ. SIMQ@ is an IBM scientific subroutine
that was converted from fortran to basic. SIMQ does Gauss
elimination and back substitution as described in the program
documentation:
PURPOSE
OBTAIN A SOLUTION OF A SET OF SIMULTANEOUS LINEAR

EQUATIONS AX=B. A IS5 NxN
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METHOD
METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST
FIVOTAL DIVISOR. EACH STAGE OF ELIMINATION CONSISTS
UOF INTERCHANGING ROWS WHEN NECESSARY TO AVOID DIVISION
BY ZERO OR SMALL ELEHM.
THE FORWARD SOLUTION TO OBTAIN THE VARIABLE N IS
DONE IN N STAGES. THE BACK SOLUTION FOR THE OTHER
VARIABLES IS CALCULATED BY SUCCESSIVE SUBSTITUTIONS.
FINAL SOLUTION VALUES ARE DEVELOPED IN VECTOR B, WITH
VARIABLE 1 IN B(1), VARIABLE 2 IN B(2) ..... VARIABLE
N IN B(N). IF NO PIVOT CAN BE FOUND EXCEEDING A
TOLERANCE OF 1.0E-20 THE MATRIX IS CONSIDERED SINGULAR
AND KS 1S SET TO 1. THIS TOLERANCE CAN BE MODIFIED BY
REPLACING THE FIRST STATEMENT.
This procedure is more efficient than actually doing the matrix
inversion and multiplication. SIMQ is called at each iteration

step and is the core of the iteration routine.

4.3 Enhancement of Computational Efficlency by Variable

Elimination

Several of the fourteen system equations are rather simple,
therefore, eight of the unknowns can be solved for c¢cloaed form.
This will Iincrease the computational efficiency of the computer
model by only having to deal with a six-by-gix Jacobian matrix.
Eight of the fourteen unknowns are solved for in terms of the
other six as outlined below.

The six unknowns that will be assumed, for the initial guess
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Xcy are:! FyrFrs FyrFLs FyeLy, FzeL, BETA, and DEL. So the first
equation can only be a function of these =six. Then eubsequent
equations can be a function of the variable previously soclved for
and the six assumed variables.

First, the drive train constraint equations allow all the
longitudinal =spindle forcea to be solved for in terms= of Fyrrgr
and FyTrFL which are guessed values. The equations are (3-43),
(3-44), or (3-45) depending on the drivetrain configuration as
shown below. The equations are listed in the order in which they

Wwould be solved in the computer model. The equations for rear

wheal drive are:

Fxter = 0.0 (3-43a)

FxtrPrL = 0.0 (3-43b)

Fxer = 172 ( SFX + ( F;TFR + FvrrFL) sin(DELTA) (3-43d)
(3-43¢c)

Fxer = Fxer

The egquations for front wheel drive are:

Fxer = 0.0 ({3-44a)
FxeL = 0.0 {3=-44b)
FxtFr = (SFX + ( Fytrr * FyTrFL? 2in(DELTA) ) {3-44d)
2 coa(DELTA?
FxtFL = FxTFR (3-44c)
The equations for braking are:
Fxer = _(SFX + (Fyrrr * FyTrgr) 8in(DELTA)) (3-45d)
2 (1 + (BP cos(DELTA)))
(1 - BF)
Fxtfrr = _Fxgm BP {32-45c)
{1 = BP)
FxrFrL = FxTFr ({3-45a)

FxeL = Fxepr (3-45b)
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Next, equation (3-22) was solved for Fzrr and substituted
into equation (3-24) to evaluate Fzer in terms of known
quantities.

Fzer = [STy + SFz L1 - FzeL (L2 *+ L1} - Fxer Her

- (FxTtFr HFR « FxTFL HrFL ) cos(DELTA)

+ (FyrFr HFr - FyTFL HFL ) sin(DELTA)

= Fxpr Her 1 / (L1 + L2) (4~-4)
Equation (3-41) was solved for FzfFr and substituted into equation
(2-21) to evaluate FzrL in terms of known quantities.

FzrL = L (SFz - Fzer (1 + C) = FzeL (1 = C) 1 (4-5)
Equation (3-22) is used to evaluzte Fzrr.

Fzrr = SFz - Fzer -FzeL - FzrFL (4-6)
Finally, equation (3-21) is solved to get Fyer.

Fyer = SFy - FypL - (FxTFr + FxTrFL) 8in(DELTA)

= (FyrFr + FyTrFL) cos(DELTA? (4=7)

To summarize, the above equations are used to solve for,
FxTFrs FxTFL, FxBrs FxeL, Fzery FzFL, FzFr, and Fyer respectively
in closed form by a specific progression through the equations.
By doing this only six variables are involved in the iteration
routine. The wvarlables FyrFrs FyTFL, FyeL:, FzeL, BETA, and DEL
are iterated by using the six remaining equations in the H;utan

Raphson routine discussed in szection 4.2
4.4 Program Flow Chart

Shown below is a flow chart of the combined maneuver program

called, COMMAN.
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DEFINE VARIABLE PRECISION
DIMENSION ARRAYS

OPEN INPUT FILE READ INPUT AND

SAVE INITIAL GUESS
I
I
|
I
|

===>START VEHICLE STEADY STATE VELOCITY LOOP

HRERARERS |

*###>**#t##*###t#t¥*#¢###tt#)*###****####*

ECHO

OFEN OUTPUT FILES ON INITIAL LOOF

-==>5TART ACCELERATION LOOP
------ »START THETA LOOP

CALCULATE CONSTANT VALUES AND

INFUT TO THE SCREEN AND TO THE OUTPUT FILES
|

222>2222>2>START NEWTON RAPHSON LOOP

})}}}}}})}}))}}}})))})})})}}}}})))

|
CALCULATE INITIAL
FUNCTION VALUES BY

CALLING THE SYSTEM EQUATIONS

| I i || ==m==e- > CALL DRIVETRAIN
| (| F i i e o < EQUATIONS
! [ 2
I e | || oo i >CALL SUSPENSION
| | [ e A < EQUATIONS
I {
| | === P e 2 »CALL TIRE EQUATIONS
| mmeeaa - < FOUR TIMES
I
|
STORE INITIAL FUNCTION VALUES IN B(__> AND FFx

++3+++55TART LOOP FOR JACOBIAN

______ {=====¢ EQUATIONS

+ (MATRIX OF PARTIAL DERIVATIVES)

. I

+ INCREMENT UNKNOWNS FOR DERIVATIVE CALCULATION
+ | (ONE AT A TIME)

* |

+ CALCULATE THE F(x+h) PART

+ OF THE DERIVATIVES BY

+ CALLING THE SYSTEM EQUATIONS

* | il ~ =

* I I I I oot » CALL DRIVETRAIN
* | | [ e e < EQUATIONS

- I L ~

+ I = | ==emedem——— >CALL SUSFENSION

* I I
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I
| | =———— 2 e e >CALL TIRE EQUATIONS
I | - A i < FOUR TIMES
|
WITH THE FF_'S AND F(x+h) CALCULATE THE
DERIVATIVES FOR ONE COLUMN OF THE JACOEIAN
AND STORE THEM IN A(__)
|
DECREMENT THE UNKNOWN
I
++++++{ NEXT JACOBIAN COLUMN
|
|
|
CALL SIMQ TO FIND NEWTON RAPHSON --->--MATRIX===
CORRECTION FACTORS SINGULAR
|
UPDATE THE UNKNOWNS WITH CORRECTION FACTORS
|
I
CHECK FOR CONVERGENCE
NO YES
I |
~=0=-=<STEP ITERATION |
| |
|==>TO MANY= = = > SEND OUTPUT TO SCREEN{~--~-- A
ITERATIONS AND OUTPUT FILES
|
|
------- (=======<(NEXT THETA VALUE
| I
HHEW | e <NEXT ACCELERATION MAGNITUDE
I I
=<===<{NEXT STEADY STATE VELOCITY MAGNITUDE
|
CLOSE ALL FILES

I
END

LA B B BN R B B R

b A A B B T s T B TR T T T T T T T S

—— e — — — — — — — Y

¥ X X X X X X X K DX K XX E KRR KKK KK K K KKK KKK

4.5 Computer Requirements

The computer model was wWritten in Microsofttm BASIC on an IBHM
FC-XT computer, then compiled for use with an 8087 math co-
processor for additional speed. The model should run on most any
home computer with minor changes to the location of allocated
files. The question is how fast and hoWw much storage is needed?

The computer program can be used effectively wWith the
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following minimum requirements; Microsoft interpreter basic or
compatible =substitute, 64k to 128k RAM, and a disc drive.
Optional. but highly recommended components are;j; a graphlics
printer or plotter, plotting software, and the necessary drivers.

The computer used during this project has the following
attributes; coming close to the optimum use of the programi

1. IBM PC-XT with a color/graphics monitor, 10.5 mega-byte

hard disk, and necessary interfacing hardware;

2. 640k of RAH in which 320k is used as a RAM diskj

3. an 8087 math co-processor;

4, B0BY support software for the basic compiler;

5. an EPSON RK-B0 graphics printer;

&. a HEWLETT PACEARD 7470A plotter; and

7. LOTUS-123 spread sheet analysis software for data
manipulation and plotting.

The run time of the program depends on the computer hardware,
the number of iterations needed to solve the non=linear
equations, and the complexity of the tlire and suspension
routines. The HNewton Raphson iteration technique usually
converges Wwithin five to nine steps;j if it converges at all. So,
below is run time information based on one iteration for a éivan
condition and a linear tire routine.

1. Running the program under interpreter BASIC each iteration
takes 40 seconds.

2. Compiling the basic program and running the executable
varalon increases the ilteration step time to four seconds.

3. Compiling with B087 support libraries further increases the

iteration step time to one second.
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Necessary storage for the program is small but significant.
The program is thoroughly documented which takes up a significant
portion of the required storage. A copy of the program listing
is given in Appendix A and a sample input file is Eiven in
Appendix B. The source code takes approximately 35k to 40k of
storage depending on the size of the tire and suspension
routines. The compiled version (for use with no BASIC support
libraries) takes about 40k to 45k of storage. The total storage
necessary can grow very rapidly 1i1f comprehensive tire ar

suspension models are emploved.



