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Chapter 3

Vehicle Modeling and Equation Derivation

3.1 HModel Overview

As astated earlier, the objective of this research is to
develop a general vehicle model that will predict the behavior of
a vehlicle during a completely defined "combined mansuver"™. This
model is to be useful az a tool for desligning vehicle
suspensionse. The governing equations are derived below with this
end in mind.

The wvehicle is traveling over a amooth road at a =steady
state wvelocity and d'Alembert type forces are applied to the
sprung mass center-of-gravity. The d'Alembert‘s forces are used
to represent a given combination of cornering and tractive/
braking effort exerted by the vehicle. This is equivalent to
studying the fully dynamic situation at a given instant in time
and is referred to as a quasi-static astate.

Quasi-static equilibrium requirements on this vehicle can be
defined as the constraints necessary to allow cornering during
tractive or braking inertial loads. By modeling this situation
wa must constrain the wvehicle such that the appropriate wheel
loads occur at all times. This requires that the vehicle will
not be constrained in: vertical motioni pltching motion§ and

rolling motion. These degrees-of-freedoms must must bae free to
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move under the influence of acceleration type forces to
distribute the loads and weight transfers appropriately. When
the tires are loaded correctly the suspension can assume the
correct deflections and wheel orientations.

The remaining degrees-of-freedom: longitudinal motion;
lateral motions; and vawing motion, of the vehicle are
constrained. The longitudinal constraint corresponds to road
load and the steady tractive or braking accelerationj which is a
d'Alembert reversed effective force. The lateral constraint, 1in
the nature of a path conatraint, also corresponda to a reversed
effective lateral inertia force and permits the calculation of
turning maﬁeuuers. The only true constraint is that in yaw which
enables the vehicle to be held at unbalanced conditions of alip
and steering angle. These constraints are applied to the sprung
mass to give realistic attitude angles in pitch and roll. The
independent variables which are used are front wheel steer angle,

DELTA, and vehicle sidesglip angle, BETA [1&1].
3.2 Pragmatic Input Related to Sprung Maass Dynamics

The sprung mass is assumed to be a rigid body wmith raaétinn
forces acting at the spindle locations. The dynamlec equations of
motion, with a body-fixed coordinate system, can be found by
applying the 1linear and angular momentum principles, equations
(3-1) and (3-2), to the sprung mass seen in Figure 3-1.

df dv

EE - - - =M =—— = m{i + WX ?__] {2=-1)
dt dt
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Figure 3-1f Sprung mass body fixed coordinate syatem
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dH .
ST = =-=-- =] w+wx H (3-2)
dt
where:
SF = summation-of-generalized-forces vectori
P = linear momentum vectors;
V and V = vehicle linear acceleration and velocity vectorj;
ST = summation-of-generalized-torques vectorj
H = angular momentum vectorj
- I = system inertia tensor;j;
w and w =vehicle angular acceleration and velocity vector.

The cross product terms appear in the above expressions because
the coordinate system is fixed to the vehicle. See Crandall L[C19]
for full detail on relative frames of reference.

Under the equilibrium conestraints discussed in the previous
section the application of the right side of equationa (3-1) and
(3-2) to the sprung mass becomes very simple. The roll and pltech
velocities and accelerations are identically =zero for quasi-
atatic equilibrium. Additionally the vertical velocity is =zero
and the wvertical acceleration has only the component due to
gravity. These conditions are easlily justified if the quasi-
static state 1is equated to a quasi-steady-state condition where
all dynamic effecte have died out and the vehlcle has come to an
equilibrium under the externally applied d'Alembart's forces.

Then the right side of equations (3-1) and (3-2) for this vehicle

become
SFx = m ( udot - r v 1} (3=-3)
SFy = m ( vdot + r u ) (3=-4)
SFz =m G (3-5)
STx = Ixz rdot - Ilyz r= (3-6)
STy = Iyz rdot + Ixz r=2 (2-7)

STz = lzz rdot (3-8)
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where!

SF's = the sum of the reaction forces in the appropriate
body fixed direction;

ST's = the sum of the reaction torques about the
appropriate body fixed axis;

m = the sprung mass;
u = the velocity in the x {(longitudinal) direction}
v = the veloclity in the ¥y (lateral) direction;
r = the angular velocity about the z (yaw) direction;
udot = the acceleration in the x directionj
vdot = the acceleration in the y directioni
rdot = the angular acceleration about the y axisj
Iz=z the mass moment of inertia about the z axis; and

Ixz and Ivyz the cross products of inertla for yaw.

Recall these values pertain to the vehicle body fixed coordinate
system, therefore, inertia properties remain constant.

All the wvalues on the right hand side of equationa (3-3)
through (3-8) are the externally applied d'Alembert forces.
These forces are the input needed to describe the system state.
Therefore these constant forces (along with wehicle parameters?
completely describe the gquasi-static state of the wvehicle
cornering with tractive or braking effort. Howevar, because
vehicle parameters such as cornering stiffness, C.G. locatlon,
wheel base, track width, etc. govern the yaw orientation of the
vehicle, the orientation of the body fixed input wvariables (u, v,
etc.) to inertial space is unknown. Therefore the orientation of
the input forces must be defined as a function of the independent
variable BETA, see Figure 3-2a.

A suitable form for this definition shown in Figure 3=2b.
The figure shows the vehicle golng around a curve of radius RHO.
The magnitude of the steady-state veloclity, V. isa at a right
angle to RHO. The angle BETA i=s the wehicle "sideslip"™ angle and

defines the orientation of the velocity vector to the body fixed
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X axis. Ancther vector, A, represents the constant d'Alembert
acceleration which is applied to the vehicle. By alsc defining
the angle THETA, the tractivesbraking and cornering components of
the wvehicle acceleration can be separated. This definition of
the wvehicle state also leads to intuitive understanding. For
example, the meaning of the astatement, "The car is goling around a
corner at 100 km/hr and 0.3 G's lateral acceleration”™ is clear.
This is the same as having V =100 kmshr, THETA =90 degrees, and A
=0.3 G's. In addition to intuitive appeal this vehicle state

definition has cther attributesa.

Betas

1"":‘ This 1i
e
wid=" provides an
*..l-""f’ inertial
v and wvdot referance
for the
wehicles yaw
orientation
Figure 3-2at Vehicle vaw Figure 3-2Zbt: Body fixed variables

orientation to inertial space related to inertial =space

By defining THETA relative to BETA rather than the x axis
the relation for centripetal acceleration may be utilized to

define the length of RHO. From the figure,

ACcENTRIPETAL = _V= = A ain (THETA?
RHO

therefore,
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RHO = y= (3-9).
A sin(THETA)

Also for quasi-steady-state the vyaw wvelocity, r, and yvaw

acceleration, rdot are found by assuming,

By using equation (3-9) and referring to the figure,

r = v = A sin(THETA) . (3-10)
(V2/ A sin{THETA)) v

Naxt rdot is found by taking the time derivative of (3-10) as

follows:

rdot = _d A sin(THETA) = _-(A sin{THETA)?> dv
dt v V= dt

From Figure 3.2b dV/dt equals A cos(THETA) which is the component
of the constant acceleration in the same direction as the
velocity vector, so:

rdot = = A= sin{ THETA) cos(THETA). (3-11)
va

The remaining input parameters are also defined in terms of BETA

as is shown in the figure.

u = V coa(BETA) (3=-121
v = V sin(BETA) {(3=-13)
udot = A cos(THETA + BETA) (3=14)
vdot = A sin(THETA + BETA) (3-15)

The sapecification of the system state is now completely
defined as a function of one independent variable, BETA. HNow any
comblnation of lateral and longitudinal acceleration can be
prescribed for a given steady-state-velocity. From Figure 3-Z2b,
the A wvector can be rotated from 0 to 180 degrees and will

represent any case, from pure tractive acceleration, through pure
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cornering, to pure braking. Eased on the above definlitlon any
equilibrium position or sprung mass reaction force can be

calculated.

3.3 Force - MHoment Reaction Summation on the Sprung Hasas

The vehicle model must be general enough to be useful in the
early stages of design. In this case the model is a lumped mass
representation of an automotive vehicle. The sprung maass has the
8ix rigid body degrees-of-freedom (dof) and each unsprung mass
has an essentially vertical dof. The last dof is the steering
angle for a total of eleven dof's. However to promote
generality, this model uses spindle forces as the unknowns (three
at each spindle?) and the dof's described above are displacements.
The only displacement unknowns used in this model are the steer
angle, DELTA; and the vehicle sideslip angle, BETA. The forces
Wwere favored as unknowns for the following reasons:

-models of different suspensions are easlier to implement,
especlially when anti-features are important;
-system equations-of-motion are in a simpler form;
-the drive train constraints are easler to describe in
terms of forcesjand
-the lateral tire forces are functions of longitudinal
and normal spindle forced not displacements.
As a result of this selection there are twelve spindle forces
plus BETA and DELTA, for a total of fourteen unknowns.

Generality is maintained by defining tﬁe locationa of
spindles with reapect to the sprung mass in a pragmatic manner.
This 18 done by defining the vertical (z direction) distance

between the apindles and the center-of-gravity;: these locations

are known very early during vehicle conception. For each spindle
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this distance has three componentst

Zc = vertical deflection of the center-of=gravity;

s vertical deflection of a given spindle; and

vertical distance between the C.G. and the plane

H

containing all four spindles at design position.

This plane contains the
center of gravity (C.G.D»

1§
Jo

Hote:
H_ = H at design

position this ia a
convention H
Fr
Pé i

Figure 3-3: Center of gravity to spindle vertical distance

The first two of these parameters, Zc and Zg ; are calculated in
the model. The H value is found by asubtracting the sastatic-
loaded-radius of the tires from the vertical position of the C.G.
relative to ground at design position. Conasequently, the ;C.G.

to spindle distance™ is defined for each spindle in Figure 3-3.

HFr = H - Zc + ZsFr (3-16)
HFL = H - Zc * ZsFL | (3=17)
Her = H - Zc + ZsBrR (3=18>
Her = H - Zc + ZsBL (3-19

The subscripts used throughout this document will be explain-

ed as needed except for those used to express a speclfic corner



=53=

of the vehicle. In this case a standard convention has been
adopted. The subscripts FR, FL, BR, and BL refer to the front-
right, front-left, back-right, and back-left respectively. This

convention is applied throughout the wWwhole document.

Fran /

Fzan

Figure 3-4: Sprung mass free body diagram

Figure 3-4 shoWs a pseudo free body diagram of the sprung
mass. The reaction forces at each spindle have three orthogonal
components. At the back, each component is orlented so it is
parallel to the respective body-fixed axis. In the front, the X
and Y direction force are similarly oriented but rotated an angle
DELTA, the ateer angle. This is done to facilitate interaction
between the main wvehlicle model and the tire subroutine.
Specifically, no trigonometric conversions are needed to send
forces to the tire subroutine because the forceas aligned with a

standard tire coordinate aystem.
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The summation of forces and moments can now be defined by
assuming the wvehicle iz symmetric from left to right; knowing the
front and back track widthe, TfF and Tej and the foresaft locatlion
of the C.G., L1 and Lz. These summations are the left hand =side
of equation (3=12 and (3=-2). Referring to Figure 3-4 and noting

the forces are exerted on the body by the suspension we have!

SFx = Fxer * FxsL + FxTFr cos(DELTA) - FyrrFrr s8in{DELTA)

+FxrrFL cos{DELTA} - FyrrL 8in(DELTA) (3-20)

SFy = Fyer * FyeL *+ FyTFr coa8(DELTA? + FxtrFr sin(DELTA)

+FyTtFL cos8(DELTA) + FxtrFrL 8in(DELTA) (3=21)

SFz = Fzer *+ FzeL + FzrFrr + FzrFL {3=-22)

]

STx (Fzrpr - FzrL) Te/2 + (Fzpr - FzeL) Te/2 - Fyer Her
- (FxTtFr 8in(DELTA) + FyTrFL cos(DELTA)} HrFL
- {(FxTtFr 8in(DELTA) + FyTrFr cos(DELTA}} HrFr (3-23)

- FyeL HeL

STy = (Fzpr + FzeL) L2 - (FzFr - FzFL) L1 * Fxer Her
+ (FxTtFr cos({DELTA) - FvyrFr sin{DELTA ) Hrr
+*+ (FxrtrL cos(DELTA) = FyTtrL 82in(DELTA») HprL (3=24)

+ FxeL HeL

STz = (FxeL - FxpL? Te/2 - (Fyer * FyeL ) LZ2
+ (FyrFr * FyTrFrL? L1 cos(DELTA)

+ (FxTFL * FxtFr?) L1 s8in(DELTA)
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+ {(FxrFr - FxTEr) cos(DELTA) Te/2
+ (FytFPr - FyTrL? 8in(DELTA) TE/2 (3=-25)
By combining equations (3-20) to (3-25) with (3-3) to (3-8)

the equations of motions of the sprung mass are complete.

3.4 Suspension Force and Displacement Relations

The reaction forces on the sprung mass deflect the guspension
and tire springs to generate an equilibrium position of the total
vehicle. The constitutive relations for the suspension and tire
springs must be generated. These constitutive relations will
then be used to solve for the twelve unknown forces at the
spindles by tranaforming them into vehicle constraint relations.

First we define the vertical displacement of each suspension
spring in terms of the over-all vehicle geometry, track wmidth,
wheel base, spindle displacement, and the sprung-mass rigid-body
displacements (roll, pitch, and bounce). These relations are
shown below in linear form because normal values of roll and

Pitch rarely exceed ten degrees (refer to Figure 3-4).

Zcer = Zc + (PITCH) L2 + PHI (Te/2) - ZsBr (3-26)
ZepL = Zc + (PITCH) L2 - PHI (Te/2) - ZssL (3-27)
ZcFr = Zc - (PITCH) L1 + PHI (Tr/2) - Zsrr {3-28)
ZerFL = Zc = (PITCH)> L1 = PHI (Tr/2) = ZsrL ({3-29)
where Zc_  is the relative displacement between the Sprung mass
and the wheel spindle, and Zs  is the vertical spindle

diaplacement relative to ground.
By defining the displacementas at each spindle in this manner

an anti-roll bar can easily be incorporated into the model. The
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roll bar 12 a spring that workszs in torsion and adds roll
stiffness to the vehicle. A roll bar can be modelled as shown in
Figure 3-5. The restoring forces generated by the roll bar are a
function of the difference between spring displacements left to
right. Therefore the total force generated on each spindle has
tuwo terma; one that acts in roll and one that acts in bounce.
With the spring displacements defined above, the relation for the

vertical forces acting on the spindles by the suspension can be

/z!,., Moter

Zoc_ =0 at

generated.

design position

Figure 3-5: Roll bar and suspension spring forces

Fszer = Ker Zcer + Kpe (Zcer =~ ZceL ) (3-30)
FszmL = KeL ZeceL * Kpe (Zcer - ZcBr) (3-31)
FegzFrr = KrFrr Zcrr * Kpr (Zecrr - ZcFL) (3-32)
FszrL = KrFL ZcrFL + KpF (ZcFL - ZcFr) (3-33)

The constitutive relations for the radial tire epring can also
be written using the same displacement definitiona. Referring to

Figure 32-6 the vertical forces applied on the spindle by the tire
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spring are:

Frzer = - KTe ZsBR ({3=-34)

FrzeL = - Kre ZsBL (3-35)

FrzrFrL = Ktr ZsFL {3=-36b)

ET,

\ Frzer = - KTF ZsFR {3=36a)

Frz

s
i
Figure 3-6: Radial tire spring

Next, the above constitutive relations will be used to
calculate the sprung mass rigid body deflections. To do this we
must realize that the suspension spring rates and the radial tire
rates are equal from one side to the other. This simplifies the

relations and is the case for all normal vehicles. Therefore:

EFr = KFrr = KrL

Ke = Ker = KL (3-37a)
KEte = Krer = KTFL

Kre = Krer = KrBL (3-37b)

By adding equation (3-32) to (3-33), noting that from Flgure 3-7:

-Fs=z (where __ = BR,BL,FR,FL) {3=38a)

Fz__
Fz = Frz (mhere __ = BR,BL,FR,FL) (3-38b)

and using equations (3-28) and (3-29) the relatlion for pitch ia:

PITCH = _2 Z¢ - = = EF + (3-39)
2 L1 2 Krfr L1

By adding equation (3-30) to (3-31), and wusing equations
(3-26), (3-27)y (3-37), (3-38) and (3-39) vehlicle bounce can be

similarly calculated.
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EreL = KT

Erter = Krte

EtFr = KTF

Figure 3-7! Sprung mass F.B.D. to show force interaction
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Zc = [ L2 (ZsFL * ZsFr) * L1 (Zser + ZsBL)
- L2 (FzFL * FzFr) / Kr
= L1 (Fzer * FzerL) 7/ Ks 1 /7 (2 L1 + 2 L2) {3-40)
By subtracting equation (3-32) from (3-33) and using
equations (3-28), (3-29), (3-37), and (3-38) the equation for
roll is:

PHI = _(FzFL - Fzrgr) (KTtFr - KF - 2 Kpp) (3-41)
T KTtr (Kr + Kpr)

3.5 Sprung Hass Rigid Body Constraint

Since the spindle forces are used as unknowns In the sprung
mass equations-of-motion, the model mathematicse do not reflect
the fact that the sprung mass is assumed to be a rigid body.
Therefore, an additional constraint relation must be generated
that enforces the rigid body assumption. If the forces are
written in terms of rigid body coordinates, this is not required.

This is best illustrated through an example. Filgure 3-8 shows a

Uni-directional System Free Body Dliagram

T -

¥ Y

Sum of Forces: F1 #+ F2 = 0D

Figure 3-8: One dof system to demonstrate rigid body constraint

aimple unidirectional system which consists of a mass supported
between two springs. If the forces are summed on the mass, the

result is a single equation in terms of twWo unknown spring forces
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F1 and F2z2. Because there is one aquation and two unknowns the
constitutive relations of the springs must be used to generate
another equation in terms of the unknown forces. These relations
are F1 = K1 Y and F2 = K2 Y. Therefore F1/K1 = F2/K2 1is the
second egquation necessary to =solve the problem. The second
equation represents the rigid body assumption for the mass.

A s8imilar equation can be generated for the vehicle model.
The necessary constitutive relations aret the vertical spindle
forces exerted on the spindles by the suspension, eguations
(2-30) through (3-33); and the forces exerted on the spindle by
the tires, (3-34) through (3-36b). By combining thess egquations
and also using (3-26) through (3-29) and (3-38) the rigid body

constraint for the vehicle is:

(FzrFL -FzFrr?) = (K1 - Kp - 2 Krn) KrFr (KF + 2 Kpr) TE (3-42)
(FzeL -Fzer? {Ktr = KF = 2 KprFr) Kte (Ke + 2 Kpa) Ts

Notice the the right hand side of equation (3-42) i a constant
(call it "C") in terms of vehicle parameters. The left hand side
is a ratic of the lateral 1load transfer in the front over the
lateral load transfer in the back. By coincidence this equation
is very similar to a parameter called TLLTD, Total Lateral Load
Tranafer Distribution. Very often this TLLTD parameter is used
to characterize the understeer/oversteer behavior of a vehicle.
In other words, the understeer/overateer traits of a vehicle can
be altered by changing the TLLTD. This similarity can be further

investigated through the use of this model.

3.6 Drive Train System Force Conatraints
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Further constraints on the spindle forces are generated by
imposing the tractiversbraking, or longitudinal characteristics of
the wvehicle as described in section 3.1. These characterlstics
are a function of the type of drive train installeds FWD (front
wheel drivel, or EWD {(rear wheel drive), and closely related are
the constraints imposed by the braking system.

By assuming the wvehicle is traveling along a smooth road on a
relatively large radius curve the drive train differential can be
modelled as ideal. This implies that the torgque applied to each
wheel is equal from side to side. Therefore the longitudinal
forces on the spindles of the two drive wheels will be equal
also, assuming the loaded radius of the tires isa equal.

Under the rear wheel drive condition the longitudinal forces,
FxtFr and FxTtFL.s. are equal to zero; neglecting drag, engine
braking, etec. The back longitudinal forces are equal to each
other, Fxper = FxeL. By substituting these conditions into
{3-20), the result is the force constraints for a rear wheel

drive vehicle.

Fxter = 0.0 ({3-43a?’
Bemery. it o {3=-43b)
FxeL = Fxer (3-43c)
Fxer = 1/2 ( SFx + ( FytrFr + FyTrFL) 8in(DELTA)) {3=-43d)

Under the front wheel drive condition the longitudinal forces,
Fxgr and FxeLs are equal to zero. The front longitudinal forces
are equal to each other; FxTtFr = FxTFL. By substituting these
conditions into (3-20), the result is the force constraints for a

front wheel drive wvehicle.

FxeL = 0.0 (3-44a)
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Fxer = 0.0 (3-44b)
FxtrFrL = FxTFrR ({3=44c)
Fxtrr = ( + (F + F ) sin{(DELTA)) ' (3-44d)

2 cosa(DELTA}

When the vehicle is braking, longitudinal forces are exerted
at all four spindle locations. These forces are directly related
to the brake fluid pressure that is delivered to each wheel.
Based on the distribution of this pressure the force constraint
for braking is derived.

A typlical brake system has a front-to-back proportioning
valve which biases fluld pressure delivery in favor of the front
brakes. In addition, there is no bias from right to left so the
force conatraint can be generated using only one side of the
vehicle. Finally, resulting forces are just equated from right
to lefti Fuxrrr = Fxter and Fxer = FuBr. This i= done by
realizing the total right side brake force is equal to (Fxpr +
FxTtER). Notice, =lince FxTtrr is aligned with the tire coordinate
system the brake force delivered to the front wheel is not a
function of DELTA (see Figure 3-4). So, if BP is the fraction of
the brake force dellvered to the front wheel the relation:

FxtFr = BF (FxBr + FxTFR) where (0 < BP < 1.0
is the front brake force, which can be solved for FxTer to get

equation (3-45¢c). So the force conatraints for braking are:

FxtrL = FxtrFr (3-455)

FxeL = FxBr (3-45b )

FxtPrr = _Fxgr BF (3-45c )
(1 - BF)

By substituting (3-45e) into (3-20) the final brake constraint

relation is:
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Fxer = ¢ SF + (F + F J sin(DELTAY) (3-45d7
t1 + (BP cos(DELTA) ) )
(1 = BP)

3.7 Kinematic Relation Between Vehlicle Sideslip and Tire

Slip Angles.

The lateral force generated by a tire is a function of the
glip angle as described in chapter 2. Therefore the slip angles
are calculated soc they may be used as input to the tire model.

The steering linkage dictates a constraint between the left
and right front steer angles. This constraint can be very
complex if all the steering geometry is included. A wvery good
approximation can be made as follows;i at moderate speeds the
steer angles can be assumed to be equal. This 1is because the
glip angle phenomencn has a much greater effect on cornering
behavior than the difference between steer angles.

Steer effects at the back wheels as a function of suspension
travel are neglected in this model. These effectas can be
included in the suspension subroutine if desired.

The gquasli-steady-state assumption impllies that the wveloclity
of any point on the vehicle must be directed at a right angia to
the radius of the turn. Thizs Implies the center-ocf-each-tire-
contact-patch wvelocity must also be at a right angle. This is=s
described in section 2.1 as a path constraint. Therefore, Flgure
3-9 shows there is a kinematic relationship between the slip
angles (ALF ), steer angle (DELTA), vehicle sideslip (BETA), and
the center of the turn. HNote that positive rotation ia clockwiae

and the =lip angles are shown in a negative position.



-k -

The steer angle DELTA defines the location of the tire plane
relative to the x (longitudinal) direction. The angle between
the tire plane and the contact-patch-velocity heading is the slip
angle; either ALFFr or ALFFL. Thie same velocity heading can be
defined as a function of the vehicle sideslip, BETA. This
functional relationship only depends on the location of the C.G.
with respect to the center of the tire contact patch in the plan
view. By defining the velocity of the contact patech in this
manner equations can be derived for the slip angles in terma of
BETA and DELTA, refer to Flgure 3-9a.

ALFFL = BETA - DELTA + XI (3-46)
ALFFr = BETA - DELTA + ETA (3=47)

To find the angles XI and ETA needed in these relationships

the law of sines and the law of cosines are used. First the law

of cosines is used to find ERHOrpr and RHOrL.

RHOFr = [ RHO= + Tg=2/4 + L12 - 2 RHO (Tg2/4
+ L12)1-2 cos(FIs2 + BETA - tan-1{(Tes/2L1)2]V72 (3-48)
RHOpL = [ RHO=2 + Tg2/4 + L12 - 2 RHO (Tg2/4

+ L12)7-2 cogs(PIl1/s2 + BETA + tan—1(Tr/2L123231772 (3-=49)

Now use these two relations and the law of sineas to find the XI

and ETA.

i

ETA ain='C (Tg2/4 + L1272 gin(FIs2 + BETA

= tan=1(Tr/2L1 23/ RHOFr 1 (3-503

XI gin-1[ (Te2/4 + L12)1~-2 gin(FPIls2 + BETA

+ tan-1{(Tes/2L11337 RHOpL 3 (3=-517



Figure 3-9:

Turning kinematics

RHO

ZETA

LAMBDA

Center of turn
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The equations for the back slip angles ALFeL and ALFer can be
found similarly by referring to Figure 3-9b. Since we have
neglected the steer effects at the back axle, ALFeL and ALFer are
not functions of DELTA.

ALFeL BETA - ZETA (3-52)

ALFer BETA - LAMEDA (3-53)

RHO=2 + Te2/4 + L22 - 2 RHO (Te2/4

[}
m

RHOBR

+ L22)1-2 cos(PI/2 - BETA - tan=-1(Te/2L2))1172 (3-54)

RHOFL = [ RHO2 + Te2/4 + L22 - 2 RHO (Te2/4

+ L2=2)1-2 cos(Fl/2 - BETA + tan-1(Ters/2L2))1772 (3-55)

ZETA = gin-1[ (Te2/4 + LZ22)7-2 gin(PI/2 - BETA

tan=-1(Te/2L2))/ RHOBr 1 (3-56)

LAMBDA 8in=-1LC (Te2/4 + L22)7-2 gin(PI/2 - BETA

+

tan-'(Tes/2L2))/ RHOpL 1] (3-57)

3.8 Tire HNHodel

By generating the vehlicle model in a general nature many tire
models exist that can be implemented. Most analytic tire models
have a standardized input/output format. 1In éanarul; the tire
model input consists of a slip angle, a normal load, and a camber
angle. Based on these wvalues (and a characterization of the
specific tire being used) the output will contain the lateral

force, aligning torque, and overturning moment that the tire can
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generate.

The complexity of an analytical tire model may vary anywhere
from =simple linear coefficients to very complex non-linear
relations. In the development of the computer model a simple
linear tire model is utilized. The linear tire model equation
is:

Fv = CALPHA ALF (3-58)
where Fy is the tire 1lateral force, CALPHA 1is the cornering
gstiffness of the tire, and ALF is the corresponding tire slip
angle. This relation implieas that the lateral tire force is
directly proportional +to the slip angle. Consequently, wheel
orientation to the road does not affect tire lateral force or
tractive effort. This approximation allowed the full development
of the system equations with less complexity. The impact of this
approximation is discussed in chapter five.

A tire model more suitable to combined maneuver analysis was
implemented after solutions with the linear model Were
understood. The nonlinear model was obtained from a reference in
Wong C3] and initially developed by Dugoff [4]1. Thi=s model uses
a saturation function related to both the =slip angle and
longitudinal slip. This function 18 used to calculate both
longitudinal and lateral forces produced by the tire. The

equations as listed in Wong are:

Fx = _CIS IS FS {3=-59)
(1 - IS)
Fy = CALFHA ( F » S (2=-60)
(1 = IS
S (2 - 5 for S < 1
FS = (3-61)

1 for 5 > 1
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S = MO Fz [1 - ER SSV (]S2 + (tan(ALF))231-2] (1 - IS} (3-62)
2 [CI=2 1ISZ + CALPHA= (tan(ALF))2]11-2

where:

]

Fx the longitudinal force generated by the tirej

Fvy the lateral force generated by the tire;
CIS = the longlitudinal tire stiffness;
CALPHA = the lateral tire stiffness;j
IS = the tire longitudinal slip;
ALF = the tire slip anglej
FS AND 5 = the saturation functionj;

MO the coefficient of frictions;

Fz = The normal load on the tire;

ER = reduction factor due to speed; and

S5V = steady state velocity.
Theae equations were developed to predict combined conditions of
braking and cornering effort. Modifications to predict tractive
and cornering effort involved only minor changes to the

equationsa. The equations then become:

Fx = _CIS IS FS {3-632)
(1 + IS) i
Fy = _CALFHA tan{ALF) FS (3-64)
(1 =« IS5)
S (2 - S for S <1
FS = (3-65)
1 for 5 > 1

S =HMO Fz [1 - ER S5V (152 + (tapn(ALF))=2)1-2] (1 + IS) (3-66)
2 [CI=2 [52 + CALPHA= (tan(ALF))=2)1-2

Some characteristic plota of force generation as predicted by

the model are shown in Figures 3-10 and 3-11. Notice that this
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tire model is not comprehensive in that camber effects are not

considered. This fact has direct implications on the amount

information the suspension model must generate.

Lateral Force vs Slip Angle
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Figure 3=-10 Lateral force characteristic of nonlinear tire model

Longitudinal Force vs Long. Slip

Kormal Load (FI) = 3300 N

3
0+
2 -
i0

4 A
-
-
ia
I: o
k3
. B
i
|

- -

=3 =71 | T P | T T T T % T ¥ =T T 71 T 1

-1 -0.8 -0.8 -04 -DE [ o.E 04 0.8 o.p i

i} l‘..un‘;ltullnd Sip
—— ALF=0 dsg — ALF=4{ dug —— ALF=10 dag

Figure 2-11 Long. force plot for nonlinear tire model
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3.9 Suspension Hodel

The subtle nature of the implementation technique used for
the suspension model makes the technique easy to overlook. This
is unfortunate because the way the suspension model |is
implemented is the backbone of the general applicability of this
vehicle model. A simple suspension model can be used if the tire
model requires just the normal load and the elip angle. If the
suspension model requires more information, or if anti-featurea
are to be implemented then the suspension model must be more
comprehensive. Therefore, this vehicle model's greateat
flexibility is that the suspenasion model can be in virtually any
form and only restricted by the regquirements of the tlire model.

The difficulty in modelling a suspension for a general
purpose vehicle model is that the =suspension geometry dictates
how forces are distributed to the sprung mass. The equilibrium
position of the vehicle under external loading depends on this
disgtribution. Force distribution 1is controlled by the anti-
features of the suspension as explained in Chapter Two. So,
vehicle orientation to the road depends more on suspeﬁsiun
geometry than external forces. By separating the calculation of
wheel spindle displacements (suspension motion) inte a
subroutine, the nature of wvehicle motion can be changed
independent of the main vehicle equationa. This allows simple
interaction between the suspension (which controls sprung mass
position?) and sprung mass dynamics (which supplles force input to

the suspension).
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The suspension can be reduced to a simple spring of the form
F = K x at each wheel. However, this form does not represent the
Elobal restoring torques produced by anti-features. The other
extreme is to include all suspension geometry in the development
of the vehicle equationsi but then the model is limited to cocne
suspension type. The method used to overcome this problem is to
use spindle forces as system unknowns and let spindle
displacements be calculated off-line by the suspension routine.
Then equations of motion can be derived using general vehicle
dimensions. So, in the system equations the following parameters
are used, negating the need for specific suspension geometry
information:
EF and Ke = Bpindle rates;
KpFr and Kpp = anti-roll bar ratesi and
Zs  =epindle displacements.
During initial computer model development the simplest linear
tire and suspension models were used. The suspension egquations

are (32-34) through (3-37) and (3=38b).

3.10 Model Derivation Summary

The vehicle model consists of fourteen equations and fourteen
unknowns wWith some auxillary equations. The fourteen equations
are derived in a plecewise manner and are difficult to
distinguish from the pieces. To further outline exactly where
these equations come from, they are 1listed in Table 1 under
general headings along with the equation numbers involved. The

fourteen unknownzs are listed below for referenced
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Table 1

General Summary of Equations Used for a Combined Maneuver Model

Eguation( *a) Description

Six of the Fourteen are F = M a
for the six dof's of the aprung maasa

Three of the fourteen are drivetrain
constraints for longltudinal motion

One of the fourteen is the equation
that constrains the sprung mass to
a rigid body.

Four of the fourteen are the tire
model used for each tire.

The rest are auxillary equations.

Chapter Three
ny v

{(3-3) thru (2-8) and
{3-10) thru (3-24)

(3-43) thru (3-45)

(3-423

(3-58) ar (3-59) to (3-65&)
{or any applicable model)

(3=-9), (3-26) thru (3=-29)
(3-34) thru (3-36)
(3=-39) thru (3-41)
({3=-46) thru (3-57)



